

1		Find the next two numbers:	
	a)	7, 14, 21, 28,	
	b)	9, 18, 27, 36,, ,	
	c)	25, 50, 75,	
	d)	7000, 8000, 9000,,	
			(NPV1, 4 marks)
2	a)	What is 1000 more than 7168?	
	b)	What is 1000 less than 2356?	
	c)	Find the value of Δ :	
		4136 + Δ = 10 136	
			(NPV2, 3 marks)

3 Write in the numbers missing from the empty boxes:

Number and	l p	lace	va	lue
------------	-----	------	----	-----

4	a)	Write these numbers using numerals:
	i)	Four thousand, two hundred and sixty:
	ii)	Four thousand, two hundred and six:
	iii)	Four thousand, two hundred and sixteen:
	b)	Write these numbers in words:
	i)	3817:
	ii)	3870:
	iii)	3807:

(NPV4, 6 marks)

5 Write these numbers in order, from smallest to largest:

12340 1432 4320 3421 3420 1243

(NPV5, 3 marks)

S	age	4: Got It?					Num	ber and	place value
6	a)	Find the valu	ie of Δ in each of these	e staten	nents:				
	i)	Δ = 5000 + 30	00 + 20						
									Δ =
	ii)	5000 + ∆ + 2	= 5302						
									Δ =
	iii)	Δ + 30 + 2 = 5	5032						
									Δ =
	b)	Complete th	e calculations:						
	i)	7070 – 1000	= 6070	ii)	6666 –	999 =			
		7070 – 999 =	-	-	6666 -	1000	=		
		7070 – 1001	=		6666 –	1001	=		
									(NPV6, 8 marks)
7	a)	Round to the	e nearest 10:						
	i)	36:				iii)	162:		
	ii)	75:				iv)	298:		
	b)	Round to the	e nearest 100:						
	i)	136:				iii)	382:		
	ii)	265:				iv)	978:		
	c)	Round to the	e nearest 1000:						
	i)	1360:				iii)	3825:		
	ii)	2500:				iv)	9970:		
									(NPV7, 12 marks)

8 Hannah thinks of a whole number.

When rounded to the nearest 10, the number is 220.

- a) What is the largest possible value of Hannah's number?
- **b)** What is the smallest possible value of Hannah's number?

..... (NPV8, 2 marks)

.....

9 a) Match the Arabic numeral with the correct Roman numeral, where possible:

15	
55	
39	
88	
93	

LV
XCIII
XV
С
XXXIX

b) Find the missing Arabic and Roman numerals

(NPV9, 5 marks)

.....

10 Calculate

a) 2167 + 374

c) 1714 – 48

.....

b) 3479 + 2667

			•••••	•••••				•••••	•••••
								(A	AS1, 8

11 a) Jacob estimates the answer to 2879 + 509 as shown:

$2879 + 509 \approx 3400$

Do you agree with Jacob?

Explain your answer

b) George says 4126 – 2363 = 2243 because:

$$4000 - 2000 = 2000$$
$$300 - 100 = 200$$
$$60 - 20 = 40$$
$$6 - 3 = 3$$
so 4126 - 2363 = 2243'

Do you agree with George?

Use an addition calculation to justify your answer

12 a) Vicki is trying to solve the problem:

There are 2479 pupils in a school. 432 of the pupils are girls.

How many pupils are boys?

i) Vicki draws a diagram to help.

Place a (\checkmark) by the correct diagram.

	432
Boys	2479

Boys					
432	2479				

ii) Solve the problem

..... people

b) Find the missing digits in this calculation

(AS3, 5 marks)

- **13 a)** Complete the number sentences:
 - i) $8 \times 7 = \dots + 7 = 12$ ii) $\dots \times 6 = 42$ v) $\dots + 7 = 12$ iii) $8 \times \dots = 72$ vi) $132 \div \dots = 12$ iv) $54 \div 6 = \dots + 22$ vii) $12 \times 3 = \dots + 26$ viii) $\dots \times 12 = 8 \times 6$
 - **b)** Find three possible values for Δ and ?

.....

c)

14

Calculate:

a) 4 × 3 × 12

b) 200 × 6

2400 ÷ 8

..... (MD2, 9 marks)

15 Write one number in each gap to make the statements true:

- a) $12 \times 8 = 8 \times$
- b) $2 \times 3 \times 4 = \dots \times 4$
- c) $2 \times 6 \times 5 = \dots \times 6$
- d) $17 \times 5 = (10 + 7) \times \dots$ = (10 ×) + (7 ×) = 50 + 35=

(MD3, 7 marks)

16 Calculate

Page 10

(MD4, 8 marks)

.....

b) 46 × 7

d) 452 × 6

17 a) Mark buys six packets of crisps.

One packet of crisps costs 24p.

How much does Mark spend?

- i) Write a mathematical statement, involving multiplication or division, to represent the problem:
- ii) Solve the problem.

b) An ice cream sundae is made of one scoop of ice cream, one topping and one sauce.

How many different ice creams sundaes can be created from 5 different flavours of ice-cream, 3 different toppings and 4 different sauces?

(MD5, 6 marks)

Fractions (including decimals)

Stage 4: Got It?

18 Complete the statements:

(F1, 5 marks)

19 Look at this number line.

What numbers are the arrows pointing at? Fill in the empty boxes.

20 Complete the following statements:

(F3, 6 marks)

21 Calculate:

Stage 4: Got It?

a)
$$\frac{1}{3} + \frac{2}{3} =$$
 c) $\frac{2}{5} + \frac{2}{5} =$

b)
$$\frac{5}{7} - \frac{2}{7} =$$
 d) $\frac{1}{8} + \frac{5}{8} - \frac{3}{8} =$

(F4, 6 marks)

22 a) Match the fraction with the decimal equivalent, where possible:

	$\frac{9}{100}$	$\frac{9}{10}$	$\frac{91}{100}$		$\frac{19}{100}$	$\frac{11}{100}$
--	-----------------	----------------	------------------	--	------------------	------------------

0.01	0.91	0.09	0.9	0.19

b) Find the missing fraction and decimal. Write them in the boxes.

(F5, 5 marks)

23 Complete the table using the correct decimal equivalent:

Fraction	Decimal
$\frac{1}{2}$	
$\frac{1}{4}$	
$\frac{3}{4}$	

	Find the value of Δ in each of these statements:				
a)	23 × 10 = Δ		d)	Δ÷10=470	
b)	Δ×100 = 1600	Δ =	e)	2300 ÷ Δ = 23	Δ =
c)	Δ×10 = 110	Δ =	f)	4100 ÷ Δ = 41	Δ =
		Δ =			Δ =
					(F7, 6 marks)
	Round:				
a)	8.3 to the nearest w	hole number:			
b)	16.7 to the nearest whole number:				
c)	99.2 to the nearest whole number:				
d)	149.5 to the nearest	whole number:			(F8, 4 marks)
	a) b) c) b) c) d)	Find the value of Δ is a) $23 \times 10 = \Delta$ b) $\Delta \times 100 = 1600$ c) $\Delta \times 10 = 110$ Round: a) 8.3 to the nearest w b) 16.7 to the nearest w c) 99.2 to the nearest w d) 149.5 to the nearest	Find the value of Δ in each of these statem a) $23 \times 10 = \Delta$ b) $\Delta \times 100 = 1600$ c) $\Delta \times 10 = 110$ Round: a) 8.3 to the nearest whole number: b) 16.7 to the nearest whole number: c) 99.2 to the nearest whole number: d) 149.5 to the nearest whole number:	Find the value of Δ in each of these statements: a) $23 \times 10 = \Delta$ d) $\Delta = \dots$ e) b) $\Delta \times 100 = 1600$ e) $\Delta = \dots$ f) $\Delta = \dots$ f) $\Delta = \dots$ f) Round: a) 8.3 to the nearest whole number: b) 16.7 to the nearest whole number: c) 99.2 to the nearest whole number: d) 149.5 to the nearest whole number:	Find the value of Δ in each of these statements: a) $23 \times 10 = \Delta$ d) $\Delta \div 10 = 470$ b) $\Delta \times 100 = 1600$ $\Delta = \dots$ c) $\Delta \times 10 = 110$ $\Delta = \dots$ f) $4100 \div \Delta = 41$ $\Delta = \dots$ g) $\Delta \times 10 = 110$ f) $4100 \div \Delta = 41$ $\Delta = \dots$ g) $A \times 10 = 110$ f) $4100 \div \Delta = 41$ $\Delta = \dots$ g) 16.7 to the nearest whole number: g) 9.2 to the nearest whole number: g) 9.2 to the nearest whole number: g) 149.5 to the nearest whole number:

26 Place these numbers in order, from smallest to largest:

1.32	1.2	1.23
1.3	3.12	2.13
	3.2	

(F9, 3 marks)

27 a) A bag of doughnuts cost £1.25.

Liz and John want to buy 4 bags.

If Liz pays £2.15, how much must John pay?

.....

b) Max is 1.62m tall.

He is 47cm taller than his sister.

How tall is his sister?

(F10, 5 marks)

© 2015

Measurement

- 28 Are these statements true (T) or false (F)?
 - **a)** 1000 m = 1 km
 - **b)** 100 m = 1 km
- c) 1000 kg = 1 g
 d) 100 minutes = 1 hour

(M1, 4 marks)

29 a) The perimeter of a rectangle is 30 centimetres.

Find two possible sets of dimensions for the rectangle.

- **Set 1:** Length = cm, Width = cm
- **Set 2:** Length = cm, Width = cm
- **b)** Calculate the perimeter of this shape.

(M2, 4 marks)

30 Each shape is made of 1 cm by 1 cm squares.

Find the area of each shape:

Stage 4: Got It?

31 A can of soup holds 500 ml and costs 70p.

How much does 2 litres of soup cost?

(M3, 4 marks)

32 a) Match the correct 12-hour and 24-hour times where possible:

b) Find the missing 12-hour and 24 hour times. Write them in the empty boxes.

(M5, 5 marks)

33 Lydia goes on holiday on Monday 6th April at 10:15 a.m.

She returns home on Wednesday 15th April at 6:30 p.m.

Calculate the duration of her holiday.

..... days hours minutes (*M6, 3 marks*)

34 a) What is the same about an isosceles triangle, an equilateral triangle and a scalene triangle?

b) What is different about an isosceles triangle and a scalene triangle?

c) What is the same about a parallelogram, a rhombus and a trapezium?

d) What is different about a parallelogram and a trapezium?

(GPS1, 4 marks)

Geometry: properties of shape

- 35 Label:
 - a) Four acute angles with the letter A
 - b) Four obtuse angles with the letter O
 - c) A right angle with the letter R

36 Here are six shapes

Write the letters of the shapes that have a line of symmetry

(GPS3, 3 marks)

37 Shade three squares so that this design is symmetrical in the line of symmetry.

(GPS4, 2 marks)

38 Find the co-ordinates of all the points.

A(..... ,)

C(..... ,)

B(...... ,)

D(..... ,)

.....

(GPD1, 4 marks)

39 This square is translated 2 squares to the right and 3 squares down.

Write the new co-ordinates of vertex A.

(GPD2, 2 marks)

40 A, B and C are three vertices of a rectangle.

What are the co-ordinates of the fourth vertex?

(GPD3, 2 marks)

•

.....

•

41 The line graph shows information about the temperature during April.

Are the statements true (T) or false (F)?

- a) It was warmer at the start of the April than at the end
- **b)** The warmest day was the 20th April
- c) The coldest day was the 10th April
- d) The warmest temperature was 30°C

.....

.....

.....

(S1, 4 marks)

© 2015

42 The bar chart shows the number of pints of milk drank by Class 4C during the week.

- a) How many pints did the class drink in total during the week?
- **b)** How many more pints did the class drink on Monday than on Friday?
- c) What is the difference between the number of pints the class drank on Tuesday and Thursday?
- d) What is the sum of the number of pints the class drank on Wednesday, Thursday and Friday?

(S2, 4 marks)

.....

.....

.....

© 2015

NOT GOT IT YET? Key topics I need to work Not 2021 in the Control of Contro 1100 C tound any number to the reserve Indexe Index address and Victoria for each Victoria for each Victoria for each Victoria for Vi Ω 5 att and intervel antervelling the Agencies articles 5 5 ~ J tive of action of action of a strength of a Ω Q 5 d Stage 4 b **Mathematics** ñ Ω _____ <u>____</u> identify social and officer was to and compare and order sugies and compare and of the sugiest and and the sugiest

